TECHNION

VISION RESEARCH LAB

INTRODUCTION

The majority of neurons in monkey primary visual cortex (V1) are complex cells with
overlapping increment and decrement activating regions (ARs). However, we recently
reported that unlike the "classical" (energy-model) complex cells, they exhibit a
diverse mixture of pseudolinear and nonlinear properties, depending on stimulus
attributes. Most complex cells respond with significant first harmonic (F1,
fundamental) to drifting sinusoidal gratings, but usually within a limited range of
parameters. At the same time, stationary flashing bars, moving edges and
counterphase gratings evoke mostly on-off, or frequency doubled (second harmonic,
F2) responses. These findings show that behavior of complex cells can not be
predicted from classical receptive fields' (CRF) spatial maps, and suggest a revised
view of underlying mechanisms.

The purpose of this study was to investigate further how the responses to gratings
depend on stimulus attributes: temporal frequency, spatial frequency and grating
patch width. Such parametric study is needed for understanding complex cells'
receptive field organization and functionality.

Extracellular responses of single V1 neurons were recorded while monkeys viewed
visual stimuli during a fixation task. The dominant eye position was monitored using
double Purkinje tracker or scleral search coil. In most cases, gaze shifts during
fixational eye movements were compensated using online feedback from eyetracker
to stimulus generator ("image stabilization"). Because of delays between shifts in eye
position and subsequent correction, this procedure was not intended to compensate
for the fast saccadic movements. Therefore, we restricted our analysis to periods of
relatively stable fixation (intersaccadic intervals, or drifts) that were identified using an
automated blink- and saccade-detection algorithm.

1. Receptive field mapping

(1.1) Receptive fields were mapped with sweeping and flashing bars and edges
and classified as simple or complex based on the measure of overlap of increment
and decrements ARs (Overlap Index, see Appendix).
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2. Data collection and analysis

(2.1) Presenting drifting and counterphase (contrast-reversal) gratings, optimally
oriented and centered on the classical receptive field (CRF):
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(2.2) Selecting "stable fixation" data segments (example: one behavioral trial 5 s):
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(2.3) Analysis of concatenated(spike train (Appendix):
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3. Temporal frequency effects - drifting gratings

Most complex cells respond with significant F1 modulation to drifting gratings of
mid-to-high (3 - 7 Hz) temporal frequency (see Appendix). But some of them show
frequency doubled (F2) or mixed (F1, F2, F3) responses at low (1 - 2 Hz) temporal
frequency (3.1). In other cells, little or no effect of temporal frequency on the
response harmonics is found (3.2).
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4. Temporal frequency effects - counterphase gratings

Similarly, responses to counterphase gratings, although predominantly frequency
doubled (4.1), sometimes show strong F1 harmonic at high temporal frequencies,
especially when modulated by sine-wave temporal function (4.2).
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5. Spatial frequency effects - drifting gratings

Spatial frequency strongly influences the response form of most complex cells.
The three most general patterns are:

(5.1) F2 responses to gratings of very low spatial frequency (and/or small width).
This behavior can be explained by the time course of the absolute flux in the
receptive field (see Appendix).
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(5.2) Decrease of the F2 and increase of the F1 component with increase of

spatial frequency.
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(5.3) Decrease of the F1 component and appearance of "subF1" modulation with

further increase of spatial frequency. Cycle-averaged histogram
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6. Patch width effects - drifting gratings

Changing grating patch width often modifies the form of the response, and not just
the response amplitude (i.e. side-inhibition). Small (less or equal to CRF - )
windows lead to F2 (6.1) or sometimes to F1 responses, and extending gratings
beyond the CRF may result in increase of F1 component (6.1) or appearance of
sub-harmonic modulation (6.2). This suggests that surrounds play an active role in
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/. Response to stationary gratings

Least expectedly, the responses of many cells to stationary gratings, usually of
mid-to-high (2 - 5 cpd) spatial frequency, exhibited robust low frequency (2.8 £ 0.5
Hz) modulation in the range similar to the "subF1" modulation elicited by drifting
gratings. Although our current analysis does not show the correlation between this
modulation and eye movement spectra, further investigation is needed to answer
whether it is an intrinsic neuronal property, a network effect, or an interaction of
the above with the activation caused by small eye movements.
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In complex cells, the form of the response to gratings (the harmonic

e content), and not just the response amplitude, exhibits systematic
dependence on stimulus attributes (thus violating a "pure" energy
model).

* Existing models of V1 receptive fields do not capture the observed
diversity of complex cell behaviors.

These results support the notion of an elaborate spatiotemporal
—“ structure of complex cells receptive fields.

e http://igoresha.virtualave.net/Work/StNO2



